1.3 First-order Partial Differential Equations

The general form of a first-order PDE for a function $u = u(x_1, ..., x_n)$ of n independent variables $(x_1, ..., x_n)$ is

$$F(x_1, ..., x_n, u, u_{x_1}, ..., u_{x_n}) = 0, (1.2)$$

where F is a given function and $u_{x_j} = \partial u/\partial x_j$, j = 1, ..., n are the partial derivatives of the unknown function u. In the case of two independent variables x, y the above form is

$$F(x, y, u, u_x, u_y) = 0. (1.3)$$

1.3.1 Lagrange's Equation

The general form of first-order partial differential equations with dependent variable z and two independent variables x and y can be expressed in the form

$$a(x, y, z) \frac{\partial z}{\partial x} + b(x, y, z) \frac{\partial z}{\partial y} = c(x, y, z), \tag{1.4}$$

where its coefficients a, b and c are functions of x, y and z. Equation (1.4) is called Lagrange's equation

• If p and q are functions of x and y only, then the equation (1.4) is called a linear equation.

Theorem (1.2): the general solution of Equation (1.4) is F(u,v) = 0, where F is arbitrary function of $u(x,y,z) = c_1$ and $v(x,y,z) = c_2$, which are solution curves of characteristic equations

$$\frac{dx}{a} = \frac{dy}{b} = \frac{dz}{c} \tag{1.5}$$

The solution curves defined by $u(x, y, z) = c_1$ and $v(x, y, z) = c_2$ are called the family of characteristic curves of equation (1.4).

Example: Find the solution of the following PDEs

1)
$$(x+1)\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 2z$$

The characteristic equations are

$$\frac{dx}{(x+1)} = -\frac{dy}{y} = \frac{dz}{2z}$$

Thus,

$$\frac{dx}{(x+1)} = -\frac{dy}{y} \implies \ln(x+1) = -\ln(y) + c \implies \ln(x+1) + \ln(y) = c \implies \ln(y(x+1)) = c$$
$$y(x+1) = c_1 \implies u(x, y, z) = y(x+1).$$

Also,

$$\frac{dx}{(x+1)} = \frac{dz}{2z} \implies 2\ln(x+1) = \ln(z) + c' \implies \ln(x+1)^2 - \ln(z) = c' \implies \ln(\frac{(x+1)^2}{z}) = c'$$

$$\frac{1}{z}(x+1)^2 = c_2 \implies v(x,y,z) = \frac{1}{z}(x+1)^2.$$

Therefore the solution of PDE can be written as:

$$F(u,v) = 0 \quad \Rightarrow F(y(x+1), \frac{1}{z}(x+1)^2).$$

2)
$$(y+z)\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = x - y$$

The characteristic equations are

$$\frac{dx}{(y+z)} = \frac{dy}{y} = \frac{dz}{(x-y)}.$$

Thus,

$$\frac{dx+dz}{x+z} = \frac{dy}{y} \Rightarrow \frac{d(x+z)}{x+z} = \frac{dy}{y} \Rightarrow \ln(x+z) = \ln(y) + c \Rightarrow \ln(x+z) - \ln(y) = c$$
$$\Rightarrow \ln(\frac{x+z}{y}) = c \Rightarrow \frac{x+z}{y} = c_1 \Rightarrow u(x,y,z) = \frac{x+z}{y}.$$

Also,

$$\frac{dx - dy}{z} = \frac{dz}{x - y} \Rightarrow \frac{d(x - y)}{z} = \frac{dz}{x - y} \Rightarrow (x - y)d(x - y) = zdz \Rightarrow \frac{1}{2}(x - y)^2 - \frac{1}{2}z^2 = c'$$
$$\Rightarrow z^2 - (x - y)^2 = c_2 \Rightarrow v(x, y, z) = z^2 - (x - y)^2.$$

Therefore the solution of PDE is

$$F(u,v) = 0 \quad \Rightarrow F(\frac{x+z}{y}, z^2 - (x-y)^2).$$

3)
$$(y-z)\frac{\partial z}{\partial x} + (x-y)\frac{\partial z}{\partial y} = z-x$$

The characteristic equations are

$$\frac{dx}{(y-z)} = \frac{dy}{(x-y)} = \frac{dz}{(z-x)}.$$

Thus,

$$\frac{dx}{(y-x)} = \frac{dz}{(z-x)} \Rightarrow dx = (\frac{y-x}{z-x})dz,$$

$$\frac{dy}{(x-y)} = \frac{dz}{(z-x)} \Rightarrow dy = (\frac{x-y}{z-x})dz,$$

$$dx + dy + dz = (\frac{y-x}{z-x})dz + (\frac{x-y}{z-x})dz + dz = (\frac{y-x+x-y+z-x}{z-x})dz = 0$$

$$dx + dy + dz = 0 \Rightarrow x+y+z = c_1 \Rightarrow u(x,y,z) = x+y+z$$

Also,

$$xdx + zdy + ydz = x(\frac{y-x}{z-x})dz + z(\frac{x-y}{z-x})dz + ydz = 0$$

$$xdx + zdy + ydz = 0 \implies xdx + d(yz) = 0 \implies \frac{1}{2}x^2 + yz = c_2 \implies v(x, y, z) = \frac{1}{2}x^2 + yz$$

Therefore the solution of PDE is

$$F(u,v) = 0 \implies F(x+y+z, \frac{1}{2}x^2 + yz).$$